The 5-HT3 receptor antagonist granisetron lowers clonic seizure threshold in pentylenetetrazole induced seizure in mice: The involvement of nitric oxide system

Taha Gholipour, Ali Mojtahed, Ahmad Reza Dehpour

Iranian Center of Neurological Research and Basic Medical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.

Background and Objective: There are at least 7 classes of receptors known for serotonin (also well known as 5-hydroxy tryptamine: 5-HT); among them 5-HT3 is completely distinct. It is a ligand-dependent cation channel highly permeable to calcium. 5-HT3 receptors are found postsynaptically in GABAergic cortical and limbic neurons beside a variety of other regions. According to accumulating evidences, epileptic seizures can be induced and/or augmented by attenuation of serotonergic neurotransmission. In contrast, manipulations increasing serotonin function (like fluoxetin administration) generally suppress epileptic seizures in animals. Nitric oxide (NO) is a small membrane-diffusing molecule synthesized by nitric oxide synthase (NOS). NO is found to be a modulator of seizure susceptibility with either anticonvulsant or proconvulsant effects in different seizure paradigms. We evaluated the effect of the 5-HT3 antagonist granisetron on clonic seizure induced by pentylenetetrazole (PTZ) and the potential connection with the NO system.

Methods: PTZ (1%) was infused at a constant rate through tail vein catheter of male Swiss mice and halted when clonus followed by falling was observed. Minimal dose of PTZ (mg/kg of mice weight) needed to induce clonic seizure was measured as an index of seizure threshold. The interaction of granisetron effects with NO was examined using NOS inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME) and NOS substrate L-arginine.

Results and Discussion: L-NAME could increase seizure threshold in its effective dose (100mg/kg, p<0.01). On the other hand, L-arginine showed a proconvulsive effect in doses higher than 100 mg/kg (p<0.01). Mice pretreated with granisetron had lower threshold than controls (31.37 versus 36.95 mg/kg, p<0.01) which could be reversed by effective doses of L-NAME (up to baseline). Co-administration of subeffective doses of granisetron and L-arginine (3 and 75 mg/kg, respectively) demonstrated a synergistic effect (p<0.05).

Our results confirm the proconvulsant role of NO. The 5-HT3 receptor antagonist granisetron also showed a proconvulsant effect in this model, probably as a consequence of decreased excitation of GABAergic inhibitory neurons. The interaction of L-NAME and L-arginine with granisetron suggest that 5-HT3 and NO may be in line in a neuronal signaling pathway, presumably through calcium mediated signaling pathways increased by 5-HT3 activation.

Conclusion: The NO system involvement is described in the 5-HT3 channel/receptor for the first time. An anticonvulsive role could be presumed for 5-HT3 agonists, which could lead to further research on a new class of antiepileptic drugs.

References

This paper was awarded the Tadokoro Prize, Best Poster Presentation, 1st Prize