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Abstract 

Objective: To construct a glycolysis-related prognostic model to predict individualized survival in patients 
with glioblastoma (GBM). Methods: Clinical data for patients with GBM, including expression levels 
of glycolysis-related genes (GRGs), were extracted from The Cancer Genome Atlas. Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were 
then carried out and protein-protein interactions were investigated. Univariate and multivariate Cox 
regression analyses were performed on the GRGs to identify the best prognosis-related genes. We then 
established and verified a novel prognostic model, based on the expression of differentially expressed 
GRGs that were significantly associated with overall survival in GBM patients. Results: ALDH3B1, 
CHPF, FBP1, ISG20 and STC1 were chosen to establish the prognostic risk score model. Patients with 
high risk scores had significantly poorer overall survival than patients with low risk scores.  
Conclusion: The glycolysis-related model has significant value in performing individualized survival 
predictions for GBM patients and could suggest better treatment options for GBM patients. Our 
results may help to elucidate GBM pathogenesis and contribute to clinical decision-making and 
individualized treatment.
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with normal cell metabolism, glycolysis produces 
large quantities of lactic acid, even in the 
presence of oxygen. This phenomenon is called 
the “Warburg effect” and has been confirmed in 
many tumors.3 Since some glycolytic enzymes 
have been shown to promote the growth of GBM 
cells, a glycolysis-related gene (GRG) marker may 
help to determine the prognosis of patients with 
GBM. In the current investigation, we explored 
the potential prognostic value GRG markers 
by integrating the full set of information about 
expression of GRG and related gene with clinic 
results obtained from The Cancer Genome Atlas 
(TCGA).

METHODS

Data pre-processing and identification of 
differentially expressed GRGs

RNA sequences and clinical data for 169 GBMs 
and 5 non-tumor tissues were obtained from 
TCGA. The ensemble set of 733 GRGs was 

INTRODUCTION

Glioblastoma (GBM), a WHO grade IV malignant 
diffuse glioma with an unpromising overall 
survival times of about 1.2 years, is a fairly 
common malignant brain tumor and accounts 
for 55% of gliomas.1 Although there have been 
many molecular and clinical research studies on 
GBM, a clear set of prognostic biomarkers and 
predictors of therapeutic responses for GBM 
patients has not been identified. The diagnosis 
of GBM relies mainly on histopathological 
examination, molecular biomarkers of cancer 
and imaging studies, and estimates of survival 
rely mainly on histopathological diagnosis and 
tumor staging. It is, therefore, crucial to identify 
reliable and accurate prognostic biomarkers to 
facilitate optimum treatment strategies. 
	 Tumor cells carry out glycolysis, which allows 
the cells to produce ATP to maintain oxidation-
reduction (redox) balance and to carry out 
macromolecular biosynthesis required for cell 
growth, proliferation and migration.2 Compared 
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gathered using Gene Set Enrichment Analysis 
(GESA, https://www.gsea-msigdb.org/gsea/
index.jsp) and expression information for the 
GRGs was extracted. Differentially expressed 
GRGs (DEGRGs) were screened according to a 
false discovery rate (FDR) < 0.05 and |log2 fold 
change (FC)| ≥1.

GO enrichment and KEGG pathway enrichment 
analyses 

DEGRGs were comprehensively tested by analysis 
of enriched Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and Gene Ontology (GO) 
terms. Biological functions in the GO analysis 
included biological process (BP), molecular 
function (MF) and cellular component (CC). All 
enrichment analyses were performed using R 
3.6.1. Both FDR and P values <0.05 were regarded 
as statistically significant.

Identification of the protein-protein interactions 
network

We submitted the DEGRGs to the STRING 
database (https://string-db.org/) to characterize 
protein-protein interactions (PPIs).4 After 
construction of the PPI network, we visualized 
it using Cytoscape (https://cytoscape.org/). We 
used the molecular complex detection (MCODE) 
package to select key complexes and genes in 
the PPI for which MCODE scores and number 
of nodes were >5.5 P values <0.05 were regarded 
as statistically significant.

Selection and validation of prognosis-related 
GRGs

We carried out univariate Cox regression analysis 
to further screen major candidate genes. Gene 
Expression Profiling Interactive Analysis (GEPIA, 
http://gepia.cancer-pku.cn/) was then used to 
select and verify mRNA levels of core GRGs 
in GBM and normal samples.6 Multivariate Cox 
regression analysis was performed on screened 
core GRGs using survival R package. To verify 
the effects of these core genes on survival, we 
used R to analyze RNA sequencing expression 
data and clinical data from GBM patients in the 
dataset from TCGA. The Human Protein Atlas 
(https://www.proteinatlas.org/) dataset was used 
to explore expression of the core GRGs at the 
translational level.7 

Prognostic models

Using the preliminary candidate genes selected 

as described above, we then developed a model 
to calculate the risk credit, as well as to evaluate 
prognosis, using multistep Cox regression 
analysis. The risk score for each patient was 
defined as follows: 

Risk score = 
n

i=1
∑  Expibi,

where Exp represents gene expression level and 
β represents coefficient value. We classified 160 
GBM patients into a training group and a test 
group. Based on the median survival analysis 
determined by the risk score, we further divided 
GBM patients in the training group into high- and 
low-risk subgroups. We compared the overall 
survival difference between the two subgroups 
using the log rank test. We also carried out 
receiver operating characteristic (ROC) curve 
analysis, using the survival ROC package in R, to 
validate the prognostic ability of the model.8 The 
test group, which comprised the remaining GBM 
patients with reliable diagnostic information from 
TCGA, was used to verify the predictive capability 
of the model. Lastly, we used the rms package 
in R to construct a nomogram, with calibration 
plots to predict the overall likelihood of survival. 
P <0.05 was regarded as statistically significant.

RESULTS

Differentially expressed GRGs in GBM

The GBM data downloaded from TCGA contained 
expression data from 5 normal and 169 tumor 
samples. We used R packages to process the data 
and find DEGRGs. A total of 733 GRGs were used 
in the analysis and 278 DEGRGs met the screening 
criteria for the study (FDR <0.05, |log2FC| >1.0), 
including 152 with upregulated expression and 
126 with downregulated expression (Figure 1A).

GO enrichment and KEGG pathway analyses of 
differentially expressed GRGs

To study the mechanisms and functions of the 
identified GRGs, we divided them into two 
groups: upregulated genes and downregulated 
genes. The KEGG enrichment analyses verified 
that up-regulated DEGRGs were significantly 
enriched in genes associated with glycolysis/
gluconeogenesis, carbon metabolism, and 
serine, glycine and threonine metabolism. The 
down-regulated DEGRGs were significantly 
enriched in genes associated with biosynthesis 
of amino acids, carbon metabolism, pyruvate 
metabolism and glycolysis/gluconeogenesis. The 
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GO enrichment analysis illustrated that the up-
regulated DEGRGs were significantly enriched 
in 1) BP: generation of precursor metabolites 
and energy, coenzyme metabolism, carbohydrate 
catabolism, nicotinamide nucleotide metabolism, 
pyridine-containing compound metabolism, 
oxidoreduction coenzyme metabolism, pyruvate 
metabolism and glycolysis; 2) CC: cytoplasmic 
vesicle lumen, vesicle lumen and secretory granule 
lumen; 3) MF: cofactor binding, carbohydrate 
binding and carboxylic acid binding (Figure 2A). 
The down-regulated DEGRGs were significantly 
enriched in 1) BP: hexose metabolism, glucose 
metabolism and monosaccharide metabolism; 
2) CC: myelin sheath; 3 MF: coenzyme binding 
(Figure 2B).

PPI networks and hub modules screening

To study the roles of different GRGs in GBM, 
we used Cytoscape to create a PPI network, 
which included 218 nodes and 963 edges, using 
the data obtained from the STRING database 

(Figure 1B). We used the mode tool to process the 
co-expression network, and determined possible 
key modules and the first important module. 
The network consisted of 36 nodes and 230 
edges (Figure 1C). The key module contained 
an abundance of glycolysis/gluconeogenesis- 
and carbon metabolism-related genes, based on 
KEGG enrichment analysis (Count ≥10, P <0.05, 
FDR <0.05).

Selection and validation of prognosis-related 
GRGs 

In total, we identified 218 key DEGRGs from 
the PPIs. To explore the prognostic significance 
of these genes, we carried out univariate Cox 
regression analysis and identified 16 candidate 
hub-GRGs that were associated with prognosis 
(Figure 3A). To verify mRNA expression levels 
of the five key DEGRGs in GBM, we compared 
expression levels of the five genes in 163 GBM 
tissues and 207 normal tissues. We found that 
the 13 genes were differentially expressed in 

Figure 1.	(A) Differentially expressed GRGs in GBM. PPI network and modules analyses. (B) PPI of GRGs; (C) 
Key module from PPI. Green: down-regulation; Red: up-regulation
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GBM tissues and normal tissues (Figure 3B). 
Multivariate Cox regression analysis was then 
carried out to determine the effect of these 13 
prognostically relevant candidate hub-GRGs 
on clinical outcomes and patient survival 
time. A total of five hub-GRGs (aldehyde 
dehydrogenase 3 family member B1 (ALDH3B1), 
chondroitin polymerizing factor (CHPF), 
fructose-bisphosphatase 1 (FBP1), interferon-

stimulated gene 20 (ISG20) and stanniocalcin 1 
(STC1)) were found to be independent predictors 
of GBM (Figure 4A). To further test the prognostic 
value of the five key DEGRGs for GBM, we used 
the Kaplan-Meier plotter to discover correlations 
between core DEGRGs and overall survival. The 
Kaplan-Meier plot identified five core DEGRGs 
(ALDH3B1, CHPF, FBP1, ISG20, and STC1). 
The results of the log rank test showed that five 

Figure 2. GO and KEGG analyses regarding DEGRGs

Figure 3. 	(A) Analysis through univariate Cox regression for core GRG identifications. (B) Validation of core 
GRG expression by GEPIA
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DEGRGs in GBM patients were signifi cantly 
related to overall survival ((Figure 4B). We then 
used immunohistochemistry to measure protein 
expression of the fi ve DEGRGs in GBM tissues. 
The four core DEGRGs (ALDH3B1, CHPF, FBP1 
and STC1) identifi ed from the Human Protein 
Atlas database were signifi cantly increased in 
GBM tissues compared with normal tissues 
(Figure 5). There was no protein expression 
information for ISG20 in the Human Protein 
Atlas database. 

Prognosis-related genetic risk score model

We used the five key GRGs identified by 
multivariate Cox regression analysis to build 
a prediction model. We calculated a risk 
score for each patient using the formula: 
Risk score = (−0.400649198*ExpALDH3B1) +
(0.022555795*ExpCHPF)+(0.163230086*
ExpFBP1) + (0.392493898*ExpISG20) + 
(0.113233127*ExpSTC1) and then performed 
survival analysis to assess predictive ability. 

Figure 4.  (A) Analysis through multivariate Cox regression for core GRG identifi cations. (B) Validation of core 
GRG survival

Figure 5. Validation of core GRG expression by the Human Protein Atlas database
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We classified 160 GBM patients into a training 
group and a test group. We classified the 82 
GBM patients in the training group into high- and 
low-risk subgroups based on median risk score. 
The high-risk group was found to have worse 
survival than the low-risk group (Figure 6A). The 
expression heatmaps of the signatures consisted 
of five GRGs in the high- and low-risk groups, 
patient survival status and risk score (Figure 6A). 
The same formula was used for the test group of 
78 GBM patients, and the results indicated that 
the prognostic model has good specificity and 
sensitivity (Figure 6B). To assess the prognostic 
ability of the five GRG biomarkers, we performed 
time-dependent ROC analysis. Using the GRG 
risk scoring model, we found that the areas under 
the ROC curves in the training group and the 
test group were 0.850 and 0.643, respectively 
(Figure 6). 

Nomogram Construction based on core GRGs

To implement a quantitative method for GBM 
prognosis, we integrated the 5 GRG signatures 
and established a nomogram. According to 
multivariate Cox analysis, the points in a 
nomogram are used to assign points to each 
variable. We drew a horizontal line to determine 

the points for each variable, calculated the total 
points for each patient by counting all variable 
points, and then normalized them to a distribution 
within [0, 100]. We drew a line between total 
points and the prognosis axis to calculate the 
estimated survival rate of GBM patients in one, 
three and five years, which may help doctors 
to make clinical decisions for GBM patients 
(Figure 7).

DISCUSSION

Based on the GBM data from TCGA, 215 GRGs 
were found to be differentially expressed between 
tumor tissues and normal tissues. We analyzed 
the biological pathways associated with the 
GRGs and constructed co-expression and PPI 
networks. Functional pathway enrichment analysis 
showed that the DEGRGs were highly enriched 
in glycolysis. It is worth noting that the hub PPI 
network module analysis showed that GBM is 
correlated with glycolysis/gluconeogenesis and 
carbon metabolism. The switch from oxidative 
phosphorylation to glycolysis is a major response 
of cancer cells to hypoxia. Hypoxia is a ubiquitous 
source of cell stress in the microenvironment 
of the tumor and plays an important role in 
tissue inflammation and malignancy.9 Rapidly 

Figure 6. Risk score analysis of five-genes prognostic model in TCGA cohort
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proliferating tumors are exposed to a hypoxic 
microenvironment because of their high density, 
high metabolic consumption and interruption of 
blood flow due to immature angiogenesis.10 The 
cellular response to hypoxia promotes highly 
malignant and metastatic behavior, as well as 
resistance to chemotherapy. Hypoxia promotes 
the invasive and mesenchymal characteristics of 
transformed cells, which plays an important role 
in the pathogenesis of cancer, including GBM.11 
The spread of GBM is closely associated with 
proliferation of microvessels in hypoxic brain 
regions. Glycolysis and carbon cycling are 
sequential metabolic adaptations of GBM during 
hypoxia.12,13 We also carried out univariate and 
multiple Cox regression analyses on survival, 
and ROC on GRGs, to further explore their 
clinical value. Five GRGs were classified as 
prognosis-related. We built a survival model to 
estimate GBM prognosis, based on five prognosis-
related GRG genes. Our findings may lead to the 
development of new biomarkers for the diagnosis 
and prognosis of GBM patients. STC1 is a novel 
atypical Notch ligand, which is regulated by 
several microRNAs in GBM, and is an important 
regulator of GBM stem cells.14,15 STC1 regulates 
the migration and invasion of GBM through 
the TGF-β / Smad4 signaling pathway.16 ISG20 
promotes local tumor immunity and leads to low 
survival rate for human glioma patients.17 Changes 
in FBP1 expression can alter metabolic process 
that affect the aggressive of GBM.18 The Warburg 

effect is the basis of tumorigenesis, proliferation, 
migration and metastasis, and contributes to a 
unique tumor microenvironment. Recently, anti-
Warburg therapies, which focus not only on the 
characteristics of the tumor microenvironment or 
direct inhibition of glycolysis but also on inhibition 
of glycolysis by increasing gluconeogenesis, have 
been developed. Screening for key glycolysis 
genes and regulating the expression of key 
glycolysis transporters and enzymes to change the 
tumor microenvironment may provide potential 
therapeutic strategies. 
	 Using bioinformatics analyses, we identified 
expression of GRGs in GBM tissues and 
determined their prognostic value in GBM patients. 
The GRGs may be involved in the progression, 
tumorigenesis, invasion and metastasis of GBM. 
We constructed a GRG coding gene prognostic 
model, which may provide a useful independent 
prognostic index for GBM. Compared with a 
single biomarker, the predictive effect of all 
participating genes provides a more accurate 
projection. Further validation of our findings in 
a laboratory setting, and in an independent cohort 
of GBM patients with similar characteristics, is 
essential before using the GRGs as a prognostic 
tool in the clinic. Glycolysis-related risk signals 
can effectively predict which patients are at high 
risk and which patients have a poor prognosis. 
More accurate individualized treatment strategies 
could, therefore, be developed for GBM patients 
with high risk scores, who need more aggressive 

Figure 7. Nomogram for predicting GBM patient OS in identification TCGA cohort
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treatment strategies and closer follow-up. Because 
treatment, sampling location, and evolution of 
heterogeneous tumor cells may all change gene 
expression, the risk score can only reflect the 
survival prospects of patients according to gene 
expression at the time of testing. It may thus 
be necessary to measure gene expression again 
for some patients with a long course of disease. 
To our knowledge, this is the first description 
of a GRG-related GBM prognosis model. Our 
results may help to elucidate GBM pathogenesis 
and contribute to clinical decision-making and 
individualized treatment.
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